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The general problem studied is the propagation of an oblique shock wave through 
a two-dimensional, steady, non-uniform oncoming flow. A higher-order theory 
is developed to treat the refraction of the incident oblique shock wave by irrota- 
tional or rotational disturbances of arbitrary amplitude provided the flow is 
supersonic behind the shock. A unique feature of the analysis is the formula- 
tion of the flow equations on the downstream side of the shock wave. It is shown 
that the cumulative effect of the downstream wave interactions on the propaga- 
tion of the shock wave can be accounted for exactly by a single parameter a, 
the local ratio of the pressure gradients along the Mach wave characteristic 
directions a t  the rear of the shock front. The general shock refraction problem is 
then reduced to a single non-linear differential equation for the local shock 
turning angle 0 as a function of upstream conditions and an unknown wave 
interaction parameter a. To lowest order in the expansion variable 0@, this 
equation is equivalent to Whitham’s (1958) approximate characteristic rule for 
the propagation of shock waves in non-uniform flow. While some further insight 
into the accuracy of Whitham’s rule does emerge, the theory is not a self- 
contained rational approach, since some knowledge of the wave interaction 
parameter (D must be assumed. Analytical and numerical solutions to the basic 
shock refraction relation are presented for a broad range of flows in which the 
principal interaction occurs with disturbances generated upstream of the shock. 
These solutions include the passage of a weak oblique shock wave through: a 
supersonic shear layer, a converging or diverging flow, a pure pressure dis- 
turbance, Prandtl-Meyer expansions of the same and opposite family, an isen- 
tropic non-simple wave region, and a constant pressure rotational flow. The 
comparison between analytic and numerical results is very satisfactory. 

1. Introduction 
In the past several decades, analytical methods have been developed for 

treating inviscid steady, two-dimensional, supersonic compressible motions which 
by and large fall into three categories: (a )  flows with small rotationality, ( b )  flows 
where the disturbance field is everywhere a small departure from uniform free- 
stream conditions, and ( c )  flows involving the interaction of a very weakly 
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disturbed uniform stream with a shock wave of finite strength. No equivalent 
analytical theory has emerged for treating supersonic flows with large amplitude 
irrotational or strong rotational disturbances. The present paper examines one 
important facet of this general problem, the non-linear refraction of oblique 
shock waves by incoming disturbances of arbitrary magnitude when the flow 
downstream of the shock is supersonic. A new shock refraction equation related 
to Whitham’s (1958) rule for the propagation of shock waves in non-uniform 
flow is derived in $ 3  for this purpose. This relation, a non-linear differential 
equation for the local turning angle of the flow a t  the shock, applies to the passage 
of an oblique shock through an arbitrary two-dimensional disturbance field. 
The series expansion procedure employed in the analytic solution of this dif- 
ferential equation differs from the usual higher-order theory in that the algebraic 
coefficients are expanded about the locally disturbed conditions ahead of the 
shock instead of an undisturbed uniform reference state. One is, thus, able to 
examine shock propagation through incoming flows which are large departures 
from uniform free-stream conditions. 

I n  flows of type (a) ,  flows with small rotationality, the mathematical approach 
is based on a perturbation expansion in which the associated irrotational flow is 
known and treated as the lowest order solution. I n  flows of type (b) ,  both the 
oblique shock wave relations and the Prandtl-Meyer simple wave relation are 
expanded as a power series in the local flow turning angle B (figure 1 (a ) ) ,  about 
a uniform flow Mm a t  upstream infinity. This theory, which was extensively 
developed by numerous investigators and applied to thin airfoils, is summarized 
in Lighthill (1954). I n  flows of type (c), the disturbances are treated as a linear 
perturbation about the solution for an undisturbed shock in a uniform stream, 
Ribner (1954) and Chang (1957). These linear analyses require both that the 
incoming disturbance field be very weak and that the flow turning angle charac- 
teristic of this disturbed field be small compared to the flow turning angle for 
the undisturbed oblique shock. Analytical techniques for investigating the 
propagation of weak oblique shocks through general two-dimensional rotational 
and irrotational disturbances of arbitrary magnitude have not, to the authors 
knowledge, previously been treated in the literature and are developed in the 
present study. 

For flows other than types (a),  ( b )  and ( c )  above, one usually resorts to numerical 
procedures involving the solution of the governing system of hyperbolic partial 
differential equations for steady, two-dimensional, inviscid supersonic flow. 
These numerical procedures, which are usually based on the method of charac- 
teristics, are expensive and must be repeated for each different set of boundary 
data. For problems involving the propagation of shocks in non-uniform regions 
Whitham (1958) has proposed a simple approximate rule, for which it is not 
necessary to solve the full system of partial differential equations on the down- 
stream side of the shock wave. The rule states that the flow quantities just behind 
the shock wave should satisfy the same differential relation as applies along the 
characteristic co-ordinate of the same family as the shock wave. This approxima- 
tion is equivalent to neglecting wave interference effects (multiple reflections) in 
the disturbed region behind the shock. The rule was used by Whitham to re-derive 
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the equations obtained by Chisnell (1955) and (1957) for the propagation of a 
shock wave normally through a non-uniformity in density or channel area in 
one-dimensional unsteady flow and the equations derived by Moeckel(l952) for 
therefraction of a shock wave by a parallel shear layer in two-dimensional steady 
supersonic flow. The original derivations of Chisnell and Moeckel were both based 
on an approach in which the region of non-uniformity was divided into a series 
of small discontinuities wherein the interaction between the shock wave and 
each discontinuity was treated independently of the presence of the others. 

The accuracy of Whitham’s simple rule has been checked against exact solu- 
tions using the method of characteristics by Bird (19Gl) for the one-dimensional 
unsteady motion of a normal shock through a density gradient and by Rosci- 
szewski (1960) for the interaction between an oblique shock wave and a Prandtl- 
Meyer expansion of the opposite family in addition to other flow problems not as 
closely related to the present study. Considering the neglect of all wave inter- 
ference effects downstream of the shock and the fact that the characteristic 
co-ordinate of the same family as the shock in the (x, t )  or (x, y) plane departed 
significantly from the shock co-ordinates in some of the cases studied, the overall 
agreement with the exact solutions is rather surprising. This accuracy has never 
been satisfactorily explained and remains perhaps the most important un- 
answered question in the theory. The double power series expansion of the exact 
shock refraction relation derived in the present study provides some new insight 
into this basic question, although it still falls short of being a rational derivation 
of Whitham’s rule. This ordered expansion is also used to derive an approximate 
non-linear equation that can be solved analytically for weak oblique shocks 
propagating through incident streams with large amplitude irrotational or strong 
rotational disturbances. Heretofore, the non-linear equations that have emerged 
from the application of the characteristic rule have been solved numerically 
except for special limiting cases. 

Some aspects of the mathematical development are novel. First, the flow con- 
ditions just behind the shock are expressed as a power series expansion in the 
local shock turning angle 6 about the local conditions ahead of the shock instead 
of a uniform upstream reference state as in higher-order thin airfoil theory. Thus, 
the coefficients in the differential relations obtained from the Rankine-Hugoniot 
shock jump conditions are not constants but variable functions of Mach number. 
A second feature is the treatment of the Euler equations on the downstream side 
of the shock. In  simple wave regions, only a single variable, the local flow angle, 
is required to determine the pressure and other flow variables. The pressure 
coefficient can, therefore, be expanded using the Prandtl-Meyer relation as a 
power series in the local flow angle alone. It is this simplifying feature which 
enables one to determine easily the complete flow pattern to second order in 
two-dimensional thin airfoil theory. For strongly rotational flows, a wave 
of one family will necessarily generate waves of comparable strength of the 
opposite family. Multiple reflections become important and another variable 
parameter is obviously required to describe the second wave system. An im- 
portant point discovered in the course of this study is that, as far as the re- 
fraction of the shock is concerned, only a single new unknown parameter, the 
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local ratio = ps/p,  of the pressure gradients along the Mach wave characteristic 
directions at the rear of the shock front, is required to describe exactly the 
cumulative effect on the shock of all the reflected wave interactions that occur in 
the disturbed flow downstream. Since the 7 characteristic makes an angle which 
is of order 8 with respect to the incident shock of the same family (see figure l(b)), 
the relative strength of incident and emitted waves a t  the rear of the shock is not 
O ( @ )  but 0(8@). Thus, one anticipates that the expansion of the flow variables 
in the Euler equations applied at the rear of the shock front involves a power 
series in two quantities 8 and O@. 

The outline of this paper is as follows: $ 2  outlines the simplifying features of 
the steady state refraction theory and motivates the derivation of the basic 
refraction relation presented in $ 3. The boundary conditions upstream of the 
shock wave are described in $4. Solutions are then presented in $5 for seven 
different types of incoming flows: pure shear, pure convergence and divergence, 
pure pressure disturbance, simple waves of the same and opposite family as the 
shock, irrotational non-simple wave regions, and constant pressure rotational 
flows. Section 6 discusses these results and compares analytical and numerical 
solutions and § 7 is the conclusion. 

2. Simplifying features 
The most important simplifying feature of the shock propagation problems 

treated in this investigation is that principal interaction occurs with disturbances 
generated in the flow ahead of the shock rather than those generated in the flow 
behind it. One can deduce, as we do below, that for disturbances of this nature 
the strength of the incident waves striking the rear of the shock will be weak 
compared to the emitted waves produced by the interaction a t  the shock front 
even if large amplitude disturbances are present in the incident stream. One 
way of arriving a t  this conclusion is to decompose the incoming disturbances 
into three basic components: ( 1 )  waves of the same family as the shock, (2) waves 
of the opposite family to the shock, and (3) a parallel shear or vortical flow. 

For waves of type (1)) it  is well known, from the results of higher-order thin 
airfoil theory, that to 0 ( O 2 )  the disturbance system is transmitted along the 
shock wave, and that the emitted waves generated in the interaction at  the shock 
front due to the vorticity or entropy gradients produced by the variation in 
shock strength are O(63). Downstream of the shock, the emitted waves will 
undergo a sequence of multiple reflections with the entropy layer that is con- 
vected downstream of the shock front along streamlines. However, the strength of 
each reflected wave will be O(@) smaller than its predecessor. This follows from 
the entropy reflection principle, which states that the difference inp  or 0 between 
adjacent points along a wave is influenced by the entropy differences t o  an 
amount of the order of this entropy difference times the difference inp  or 6. Thus, 
the strength of the incident wave family at  the rear of the shock is 0(66), the 
primary emitted waves and the entropy layer each being O(03).  

For incoming disturbances of type (2), waves of the opposite family to the 
shock, the disturbance system is primarily transmitted through the shock front. 
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The variation in strength of the incident shock wave is of the order of the product 
of the strengths of the incident shock and the upstream disturbance wave system. 
If both are 0(8),  then it follows from previous arguments that the attenuation 
of the incident shock is O(Oz). Thus, the entropy gradients produced by the 
interaction at the shock front are 0 ( O 6 ) ,  and the downstream reflections of the 
transmitted waves by this entropy layer are O(07). 

Shock 

/ Shock 

M2, PZ 

(a) (b)  

I Ml, Pl 

FIGURE 1. (a )  Schematic of flow angles a t  the shock front. ( b )  Characteristic 
co-ordinates behind shock wave. 

For incoming disturbances of type (3), where the vorticity distribution is pro- 
duced upstream of the shock in high shear regions, and is only slightly modified 
by the interaction with the incident shock, the problem of multiple downstream 
reflections is more subtle. The ratio @ = pt/p,, is a measure of the local relative 
strength of waves of the same and opposite family downstream of the shock. Since 
the entropy gradients generated by a shock whose turning angle is O(8) are at  
most 0(03) ,  the incoming vorticity distribution is only altered to O(83) by the 
presence of the shock wave. 0 at a given point is proportional to the ratio of the 
product of the cumulative strength of the waves of the opposite family that are 
either transmitted or emitted at  the shock front below that point and the 
strength of the entropy layer through which they pass to the product of the 
strength of the incident shock and the local entropy gradient which it sees. Thus, 

can be O( l), if there is an incoming wave system of the opposite family and of 
the same strength as the shock, or if the attenuation of the incident shock by the 
vortical layer is of the same order as its undisturbed strength. In  the latter case, 
the total strength of the emitted waves produced by the vorticity interaction 
at  the shock front will be of the same order as the shock itself. In  problems of this 
nature, the reason for anticipating, that incident waves will be less important 
than emitted waves along the rear of the shock, is the difference in projected 
area that a differential element of the shock makes with the [and characteristics. 
The angle 8, which the shock makes with the 7 characteristic, is of the order of 
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the local shock turning angle 8, whereas the angle which the shock makes with 
the c characteristics, 2p - e, is to  lowest order 2p. Thus, from figure 1 (b) the 
width of the 7 characteristic tube subtended by the shock segment (ab) will be 
O(8)  smaller than the width of the 5 characteristic tube, and the ratio of incident 
to emitted waves from (ab) will be O(8CD). Consequently, incident waves striking 
(ab) due to forward scattering will be O(8) smaller than the waves emitted from 
(ab), even when CD = O( 1). CD cannot be > O( I), if the principal interaction occurs 
with disturbances generated upstream of the shock.? 

The above arguments show qualitatively that, for an arbitrary upstream dis- 
turbance, which contains components of types (1) )  (2) and (3), multiple reflections 
and incident waves a t  the rear of the shock are higher-order effects in the treat- 
ment a t  the rear of the shock of the wave system that carries the disturbance 
downstream. Therefore, one anticipates that, for this class of shock refraction 
problems, Whitham’s approximate characteristic rule should provide a reasonable 
description, and that the criterion for its validity is simply that 8CD < 1.  The 
problem of the interaction of a shock with an upstream generated disturbance 
is, in a sense, the inverse of the leading-edge shock problems treated by Friedrichs 
(1948) and Whitham (1952) for the flow past a thin airfoil or projectile in a uniform 
stream. I n  the latter problems, the principal interaction occurs with incident 
waves emanating at the obstacle striking the rear of the shock, where their 
entropy reflections of the opposite family (the primary family in the present 
study) at the shock front are third-order effects. 

An important simplifying feature in the description of the flow behind the 
shock is the fact that the (dp, d#)  characteristic relations do not depend on the 
entropy s, or stagnation enthalpy H ,  explicitly, and are therefore the same for 
both irrotational and rotational flow, For points just behind the shock front, 
this simplification is not just formal, as is the case for interior points in the flow 
field. The determination of the velocity components and Mach number need not 
include the other characteristic relations, which do depend on ds and dH ex- 
plicitly; they can be obtained directly from the local oblique shock relations. The 
vorticity layer on the downstream side of the shock wave can be thought of as 
a continuous distribution of slip lines. The matching condition, which relates the 
oblique shock relations and the Euler equations a t  the rear of the shock, is, 
therefore, basically a slip-line boundary condition between the local pressure 
and flow deflection angle. Thus, both the flow equations and boundary conditions 
motivate the choice of the pressure behind the shock p 2 ,  and the flow turning 
angle 8, as the natural dependent variables for shock refraction problems. 

These basic features are employed in§ 3 to  derive a new shock refraction relation 
for rotational steady flow. The key steps to  be followed in this derivation are: 

(1) The oblique shock relations are differentiated along the shock front. All 
the unknown differentials on the downstream side are eliminated in favour of 

t Once the shock has passed through the region where the interaction with upstream 
disturbances dominates, CD will become large, since the reflected waves incident a t  the 
rear of the shock then become the principal wave system. These waves interact with the 
shock over large distances, but will be important only if their cumulative strength is 
comparable to that of the shock itself. 
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dp, and do. The result is a differential equation relating dp, and d8 to the 
differential changes dpl and dM, on the upstream side of the shock (see (3.5)). 

( 2 )  The coefficients of the differential equation derived in (1) are developed as 
a power series in 8 about the local conditions upstream of the shock wave (see 

(3) A second independent relation between dp, and d6 at the rear of the shock 
is derived from the (dp, d4) characteristic relations on the downstream side of 
the shock front (see (3.23)). 

(4) The coefficients of the differential equation derived in (3) depend on the 
ratio, @ = p[/p,,, and the flow variables, M2,p2, etc., on the downstream side of 
the shock. These coefficients are developed as a power series in 8 and 8@ about 
the local conditions ahead of the shock wave (see (3.24)). 

(5) The slip line compatibility or matching condition on p2 and 8 at the rear 
of the shock is now satisfied by equating the two relations for dp, and d8. The 
result is a single equation relating the differential changes in shock turning angle 
d8 to the differential changes dpl, d8,, dMl of the flow variables on the upstream 
side of the shock (see (3.28)). 

Equation (3.28), the new basic shock refraction relation, describes the passage 
of an oblique shock through an arbitrary disturbed flow for which M, > 1. 

(3.8))- 

3. Derivation of shock refraction relation 
(i) Oblique shock wave equations 

First, we derive the results numbered (1) and ( 2 )  in 0 2. The oblique shock relations 
apply locally, and they are valid across the shock throughout the disturbed flow 
region. The basic unknown is the local flow turning angle at  the shock, 8 = O2 - 8,. 
The subscripts 1 and 2 refer to conditions just upstream and downstream of the 
shock respectively. The local pressure jump across the shock is given by 

where /?, the local shock wave angle, is related to 8 by 

tan(/?-8) (y-1)M2,sin2/?+2 
tan/? ( y+  1) M2,sinSp 

- - 

Equations (3:l) and (3.2) provide two equations for the three unknowns pg, 
/? and 8. Taking the differentials of (3.1) and (3.2), one obtains, respectively, 

dpz- ( s ) p l  Mqsin2/?d/? = ( - y4+y1) PlMl sin2PdM, 

sin2(/?-8) 4 cos2(/?-8)) d /?=-  ( __ 8 )cosz(/?-8)dMl 
+- y +  1 M2,sin2/? y + 1  sin2/? M3,' 

(3.4) 
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d p  can now be eliminated between (3.3) and (3.4) and the first result obtdned: 

dpz-apld8 = bdp,+acp,dMl: 

2 y M2, sin 2p a , -  
y + l  a ) 

b = 1 +  (5) (M2,sinZp- 1)) 

a =  1 -  sin2(p-8)+( 4 ) cos2 (p  - 8) 
sin 2p y + l  M2,sin2p * 

(3.5) 

Equation (3.5) relates the differential changes in pressure along the rear of the 
shock dp,  and the differential changes in the local flow turning angle at the shock 
d8 to the incoming disturbances dp, and dMl. The equation is non-linear, since 
the coefficients a, b,  c depend on the unknowns p and 8, where dp  from (3.4) is 
given by 

(3.6) 1 
1 

dp-- do = edM,, 
a 

e = - -  ~ ~~ 

y + 1  ( a&!: )cosz(p-H) sin2P ' 

From (3.6), p = p(8, Ml). Thus, the coefficients a, b,  c in (3 .5 )  are functions of 
8 and MI only. For a prescribed distribution of MI and p1 ahead of the shock wave, 
the right-hand sides of (3.5) and (3.6) are known, and (3.5) provides a single 
differential equation for the two unknowns p ,  and 8. No additional information 
about p 2  and 8 or 8, can be obtained from the oblique shock relations. A second 
independent relationship between dp, and d8 or do, is, therefore, required, and 
will be derived in §3(ii) from the equations governing the flow downstream 
of the shock. 

The flow variable 8, does not appear explicitly in (3.5) and (3.6). The relevant 
angle for the oblique shock wave is the local flow turning angle 8 across the shock. 
Therefore, one anticipates that for weak shocks the coefficients a, b,  c, e, a may 
be expressed as power series in 8 about the local conditions that obtain upstream 
of the shock. This expansion can be performed in the same manner as the usual 
higher-order theory (see Lighthill 1954). The only difference is that the expansion 
uses the local Mach number H,, which is variable, as the upstream reference 
condition rather than the constant M,, as would apply for a uniform upstream 
state. One obtains for tan p 

(3.7) 

where W ,  = (M2,- l)t 

(Lighthill 1954). The trigonometric terms in the coefficients a, b,  etc. in (3.5) 
and (3.6) can be expressed in terms of t anp  and trigonometric functions of 8. 
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Expanding the latter as a power series in 8, and using (3.7), one obtains result 2 

of $ 2 :  a = a , + ~ , 8 + 0 ( 0 ~ ) ,  

(3.8) 1 b =bl+b20+0(02), 

c = c,+c2e+c3e2+o(e3), 

a = a,+a2e+o(e2), 
e = e,+e2B+e362+O(83), 

yM2,(M2, - 2)2 + y2M: 
2 4  f a2 = a, = ~ 

YM2, 
"1 

b, = 1, b, = a,, 

1 da 
e ---1 

1 el = -__ 
Mlol' - a2,dMl' 

The a,, b,, etc., are, therefore, variable functions of Ml alone. Terms of O ( P )  
are retained in the expansion for c, since c1 = 0, and the first higher-order correc- 
tion for the pure shear case will require c3. The term e382 is retained, because it 
is required in the second-order correction for the shock wave angle p. To 0(02), 
equation (3 .6)  is 

de+(el+e2e+e382)dittl. (3.9) 

However, eldM, = dpl ,  where ,ul is the local Mach angle, sin-l(l/Ml), of the 
incident stream. Combining this with the expressions for the e, from (3.8), one 
notes that the right-hand side of (3.9) is the exact differential, 

(3.10) 

(3.11) 

where the subscript i refers to any convenient reference state, e.g. the conditions 
a t  the point where the shock first enters the disturbed flow region. 

For a uniform incident stream, (3.5) for weak shocks reduces to 

dp2-[a1+a28+0(82)]p,d8 = 0. (3.12) 

(3.13) 
a 

The integral of (3.12), 

is Busemann's well-known second-order expression for the wave strength. 

'Z-r)l = al8+2B2+O(O3), 
Pl 2 

(ii) Flow equations behind the shock wave 
We next derive the second independent equation relating dpz and d8 at the 
rear of the shock. The important simplifying feature to be used is that the (p, 9) 
form of the characteristic relations, 

aPkma+ = o on 9 = tan(++p),  (3.14) 
ax 

where m = ypM2tanp 
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(Perri 1954, p. 590, (2.25)) is the same for both irrotational and rotational flow, 
since the differential variations in entropy and stagnation enthalpy do not appear 
explicitly in this form of the relationships. At the rear of the shock wave, p = p, 
and $ = 8,. The principal complication is that the ( p ,  $) relationship is required 
along a line at the rear of the shock, where the Euler equations do not have the 
simple ordinary differential form of (3.14). First, we shall write the equation of 
the rear of the shock front Y(x) in (&y) characteristic co-ordinates, and then 
derive the relation between dp and d$ that exists along the curve Y(x ) .  

In  figure 1 ( b ) ,  E and x are the two interior angles that the 7 and [ characteristics, 
respectively, make with the rear of the shock wave front. Since the sum of the 
interior angles of a triangle sum to 180 degrees, 

x = 2 p - € .  (3.15) 

Thus, along the shock front, d t  and dy are related by 

dvsinc = d<sin(n-x). (3.16) 

Combining these two results, one has 

a[ = r a y ,  (3.17) 

sin E 

sin ( 2p2 - 8) ' 
rT= 

Along the curve Y ( z )  at the rear of the shock front defined by (3.17), d p  = dp, 

(3.18) 

(3.19) 

and d$ = do,. Therefore, 
dPz = (P, + VPC) d% 

do, = ($4) + 4 6 )  dv. 

Dividing (3.18) by (3.19), and rearranging terms, 

(3.20) 

However, p5/p7) and $E/q511 are related through the characteristic relations (3.14) : 

3 = -2%. 
A g7) 

Substituting this last result back in (3.20), and noting from (3.14) that 

a t  the rear of the shock, one obtains 

(3.21) 

(3.22) 

where = pC/p4 ,  the ratio of the pressure gradients along the 6 and q charac- 
teristics, is a measure of the relative strength of the incident and emitted waves 
behind the shock. The interesting feature of (3.22) is that the entire wave inter- 
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ference effect downstream of the shock is described by a single unknown para- 
meter @. Equation (3 .22)  reduces to Whitham’s characteristic rule, if the factor 

is set equal to  unity. 

and (3 .22)  rearranged to  read 

(1 + @I))/( 1 - cr@) 

The factor (1 + cr@)/(l-  cr@) in (3 .22)  can be written as 1 +{2a@/(l -cr@)], 

(3.22 a)  

This form is convenient for examining the accuracy of Whitham’s approximation, 
since from (3 .14)  the left-hand side of ( 3 . 2 2 ~ )  is zero along the characteristic of 
the same family as the shock. I n  Whitham’s approximate rule, the left-hand 
side of ( 3 . 2 2 ~ )  is set equal to  zero and applied along the shock front. Thus, the 
deviation of dp, + m,dO, from zero along the shock is one measure of the accuracy 
of Whitham’s simple prescription. Just  why this group of terms should be small 
is difficult to explain, but comparisons of exact solutions with solutions using the 
rule have yielded surprisingly good agreement. Some insight into this basic 
question can be had by examining the right-hand side of ( 3 . 2 2 ~ ) .  It is evident 
that  for Whitham’s rule to  be accurate either cr@ or de, must be small. Since, as 
we shall show later, d6, = 0 to lowest order only if the upstream disturbance is 
comprised solely of simple waves of the same family as the shock, one concludes 
that the accuracy of Whitham’s rule depends on the smallness of cr@. For weak 
shocks, from (3 .17) ,  CT is proportional to  the shock turning angle 8, since E can 
be developed as a power series in 8. The magnitude of the geometrical factor cr 
is computed numerically for both weak and stronger oblique shocks later in 
5 3 (ii) (see figure 2) .  cr increases from zero for a Mach wave to a maximum value 
of unity when M2 = 1 .  Thus, for very weak shocks, the accuracy of the charac- 
teristic rule follows from the closeness in slope of the 7 characteristic surface and 
the shockwave. For stronger oblique shocks, the accuracy of the rule must rest 
on the fact that  the interaction parameter @ < 1. Based on reasons discussed in 
6 2, @ is always < O( 1) in problems where the principal interaction occurs with 
disturbances generated upstream of the shock. However, for other applications, 
@ need not be small compared to unity, and the accuracy of the approximate 
rule must be carefully scrutinized unless cr < 1. 

The unexpected accuracy of the results obtained by Chisnell and Whitham for 
one-dimensional unsteady shock propagation using the approximate rule was 
questioned. in Whitham (1958) using arguments similar to  those presented above, 
except that  characteristic co-ordinates are not introduced. We shall develop his 
arguments for two-dimensional steady flow here, and show the equivalance of 
the two approaches for one-dimensional unsteady flow in $ 7 .  Along the shock, 
the right-hand side of ( 3 . 2 2 ~ )  can be expressed in (x, y) co-ordinates as 

aP2 + m,de, = (tan (8, + P ) )  (P, + m 2 q  ax + (pZ + m,e,) ax, 

where tan(O,+p) is the local slope of the shock wave. Similarly, along the q 
characteristic, one can write 

PZ+ (tan(e,+~~))P,+m,feZ+(tan(~,+p,))8,) = 0. 
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Combining these last two results, one can show that, along the shock wave, 
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dp2+m2d0z = (tan (0, +p)  -tan (0, +,u,)) (pl/ +m28,) dx. (3.22b) 

The right-hand sides of (3.22a) and (3.223) are equal. The first factor in (3.223), 
the difference in slope between the local shock wave and 7 characteristic direc- 
tions, is related to our (T. For stronger oblique shocks, this geometrical factor can 
be of O( l) ,  and the accuracy of the approximate rule depends on the smallness of 
the second factor p,+m20,. From (3.14) and (3.21), this second factor can be 
written in characteristic co-ordinates as 

Py + m2 8, = 2PI ty7 

and hence is related to our CD. Since it is the relative magnitude of pI  and p7, and 
not the absolute value of pt,  that allows one to neglect wave interference effects, 
0 for present purposes is the more suitable parameter. 

Since 8, and not 0,, is the basic variable for the oblique shock relation (3.5), 
it is convenient to rewrite (3.22) as 

dp2+hd0 = -hd0,, (3.23) 

h = m 2 ( g ) .  

Equation (3.23) provides the second independent relation between dp2 and d0. 
This is result number (3) of 3 2 .  It will be used with the other independent relation 
(3.5) between dp2 and d0 derived in $ 3  (i). Equation (3.23) involves no approxi- 
mations other than those inherent in the Euler equations. 

For the reasons discussed in $2,  CD will be < O( 1) in regions where the interac- 
tion between the shock and the incident stream is the dominant effect. Both r 
and the flow variables with the subscript 2 in the expression for ?L can be developed 
as a power series in 0 about the local conditions ahead of the shock. To determine 
the leading terms in the series for (T, one uses the knowledge that, to O(0) ,  the 
shock bisects the 7 characteristics ahead of and behind itself. Therefore, to O(0) ,  
E. = (p2 -p1)/2. The power series for p 2 ,  M2 and p, are readily obtained from the 
oblique shock relations. Consequently, the series expansion for h takes the form 
of a double power series in 0 and 8CD: 

h = h,+h20+h,0CD+O(02)+O(0202),  (3.24) 

h, = alp12 h, = a2P1, h, = “lPlg1, 

and G = &g10+O(82). Equation (3.24) is result (4) of $2. While h can be formally 
expanded in the double power series (3.24), this cannot be viewed as a rational 
approach to Whitham’s rule. CD is unknown, and some knowledge of its order of 
magnitude must be assumed if one is to neglect certain higher-order terms in the 
series. 

Significant simplification is obtained if the third term in the above expansion 
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for h can be neglected in comparison with the second. The second term in the 
expansion for h (3.24) will be greater than the third if 

w10 < 1. 
a2 

The coefficient of 0 in (3.25) is 

(3.25) 

For a y = 1.4 gas, this coefficient a,g,/a, increases from the value 4 a t  MI = 1 
to a maximum value 9 at M, = 4 2  and then decreases back toward Q as M, -+ co. 
Thus, h, > h, over the entire range of M,, and the minimum value of @, for which 
the third term in (3.24) can exceed the second term, is to 2, depending on MI. 
The solutions examined in the present investigation will assume that condition 
(3.25) is satisfied. For weak oblique shocks, this condition ensures that incident 
waves at the rear of the shock will not have an important effect to O(Ba) for 
upstream shear disturbances, and to O ( @ )  for upstream wave type disturbances. 
(See (3.30).) 

For oblique shocks with larger turning angles, the equivalent criterion to 
(3.25)’ for the neglect of multiple wave reflections behind the shock in the ex- 
pression for F, in (3.23), is that 

sin E 
0-0 = 0 Q 1. 

sin (2,u - E )  
(3.26) 

If this condition is satisfied, h then reduces to the value it takes in Whitham’s 
approximate characteristic rule : 

h = m,. (3.27) 

The quantity B depends only on the local oblique shock wave relations. Referring 
to figures 1 (a) and ( b )  for the geometric relationship between the various angles, 
one can show, after some trigonometric manipulation, that the expression (3.17) 
for B can be written as 

tanp, - tan (p  - 8 )  
tank, +tan (p - 8)  ’ 

0-= ( 3.1 7 a)  

In  this form, B is readily computed from the shock jump conditions; tan (p - 8) 
is obtained directly from (3.2). 0- as a function of 0 and M, is plotted in figure 2. 
Given an order of magnitude estimate for a, this figure provides a simple guide 
for the range of validity and the error introduced in Whitham’s approximation. 
The lowest-order result for weak oblique shocks B = (g l /2)  8 is also shown in the 
figure for comparison. One notes that, for the smaller values of 8, B is a minimum 
at N, = 2 .  This value of H, corresponds to the minimum of the Mach number 
function g ,  in the first-order approximation for B. For M, < 3, the linear approxi- 
mation for 0- is a reasonable description over much of the range of B of interest, 
except for the region near M, = 1. For all M,, 0- approaches unity asymptotically 
with 0 as the velocity behind the shock approaches sonic value, since tan,uu, in 
(3.17a) approaches infinity asymptotically as M2 approaches unity. Thus, if 
0 1, condition (3.26) is satisfied, and hence Whitham’s approximation is valid 
for any oblique shock with supersonic flow behind it. When 0 = O(l) ,  the limits 
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of validity of criterion (3.26) are much more restricted, particularly at high 
Mach numbers, where CT is proportional to the hypersonic similarity parameter 
MIO. 

1 .a 

0.8 

0.6 

0- 

0.4 

M.=l 

0 10" 20" 30" 40" 50" 

e 
FIGURE 2. cr in condition (3.26) for the validity of Whitham's approximate characteristic rule. 

-_ , exact result ( 3 . 1 7 ~ ~ )  ; - - -, linear theory u = isl 8. 

(iii) Compatibility conditions at the rear of the shock 

When a disturbance passes through an oblique shock wave, the change in shock 
strength must be consistent with the strength of the waves which propagate the 
disturbance downstream. Since each streamline that passes through a curved 
shock is a slip line, downstream compatibility conditions on pressure and flow 
deflection angle must be satisfied along the entire length of the shock. From (3.5), 
the variation in pressure at  the rear of the shock, dp2, comes from three sources : 
a Mach number gradient dM,, an incoming pressure disturbance dpl and/or a 
change in the local turning angle of the flow do. From (3.22) and (3.23) the pressure 
gradients so generated cannot be supported by the inviscid flow at the rear of the 
shock. This in turn produces waves of just sufficient strength to satisfy the slip 
line boundary condition. However, in this process, an unavoidable coupling 
between the downstream flow and the shock develops. The change in the local 
flow deflection at  the rear of the shock, do,, which results from the variation dpz, 
is determined, not by the shock relations, but by the flow equations downstream, 
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i.e. (3.22). It is for this reason that the local turning angle of the flow, 8, cannot 
be determined independently of the downstream flow conditions. 

Now, dp2 in (3.5) must equal dp2 in (3.23). This compatibility condition 
determines the basic equation for the local turning angle, 8: 

1 
-dB = ___ (hd8,+bdpl+acp1dMl). 

h+UPl 
(3.28) 

Equation (3.28) is result number (5) $ 2. This is the important result of the deriva- 
tion of the equations, in that the general shock refraction problem for M2 > 1 
has been reduced to the solution of a single differential relation, in which all 
wave interference effects downstream of the shock have been combined into a 
single parameter 0. Under certain conditions, when (3.25) or (3.26) are satisfied, 
these effects can be ignored, and (3.28) solved directly, since the unknown 
parameter CD is not required except to calculate higher-order corrections. For 
flows in which downstream wave interactions cannot be neglected, (3.28) is still 
readily solved, if the distribution of @ along the rear of the shock is prescribed. 
Therefore, (3.28) also affords a simple approximate means of solving shock re- 
fraction problems, in which d is not small, which avoids the detailed solution of 
the governing system of partial differential equations. In problems of this type, 
one prescribes approximate distributions of 0 in much the same spirit that 
approximate distributions of velocity are chosen in Oseen type linearizations of 
the Navier-Stokes equations. This approximate approach to shock refraction 
problems is being studied further for flows where the incident waves behind the 
shock are important. 

For large turning angles, but with M2 > 1, (3.28) must be integratednumerically 
along the shock front. p i s  then determined from (3.2) or (3.6), p 2  from (3.1), and 
N2 from the oblique shock relation, 

(3.29) 

For small shock turning angles 0, (3.28) reduces to 

+ dMl(c,8 + c302 - 4 ~ ~ 9 ~ 8 ~ 0  + O p ) ) ,  (3.30) 

while (3.29) becomes M2 = M,+f18+f282+O(83) ,  (3.31) 

Ml( 1 + *(Y - 1 ) M21) fl = - 
u1 

7 

[(y - 1) M;t - $(y - 1) J q - -  11 

2Wl 
f 2  = - f 1  

Note that there is no term O(1) in the coefficient of dMl in (3.30). It is for this 
reason that the first higher-order correction for the pure shear case requires the 
retention of the c3 term in (3.8). In $ 5  and $ 6, numerical and analytical solutions 
to (3.28) and (3.30) are presented, for various types of incoming disturbances 
where the criterion (3.25) or (3.26) is satisfied. 
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4. Upstream flow and initial conditions 
The boundary conditions for the basic equation (3.28) or (3.30) are the values 

of M,, p1 and OI just upstream of the shock. The initial conditions are the values 
of M,, p,, 8, and 8 at the reference point where the integration is started; the 
subscript ( )i will be used to denote this initial value. I n  the most general case, 
when M,, pl and 8, depend explicitly on the spatial co-ordinates, one needs to 
integrate the equation of the shock front, 

dY 
- = tan (p+ el), ax 

in conjunction with (3.28) or (3.30). The shock anglepin (4.1) must be determined 
a t  each point along the shock from (3.6) or (3.11), as the case may be, since the 
position of the shock is one of the unknowns of the problem. 

do,, dp,, and dM, represent total differentials along the shock front in (3.28) 
and (3.30). Thus, when criterion (3.25) or (3.26) is satisfied, and termsinvolving @ 
can be neglected, or if @ is prescribed, the basic equation for dB reduces to an 
ordinary differential equation. In  addition, if (a)  any two of the three differentials 
do,, dp,, and dMl, are zero, or ( b )  if p,, el, and M, can be related to one another 
and @ = 0 or is a function of the flow variables alone, then the solutions to (3.28) 
and (3.30) have some generality, since they are functions of the flow variables 
themselves, and do not depend explicitly on the spatial co-ordinates. The three 
flows of category (a)  are: (i) pure shear, dpl = do, = 0, dMl f 0;  (ii) pure diver- 
gence, dM, = dp, = 0, do, + 0; (iii) pure pressure disturbances, dMl = do, = 0, 
dpl =+ 0. Flow (i) provides results of interest for the propagation of oblique shocks 
through boundary layers and free shear layers and shock refraction in a wind 
stratified atmosphere. Flow (ii) provides results of interest for the propagation of 
an oblique shock through a converging or diverging nozzle flow. 

Three flows where the upstream conditions allow the determination of a rela- 
tionship between the upstream flow quantities p I ,  01, and MI, category (b ) ,  will 
be treated. These include the propagation of an oblique shock through: (iv) simple 
waves of the same family, (v) simple waves of the opposite family, (vi) irrotational 
non-simple wave regions where @,, the ratio of the pressure gradients along the 6 
and 7 characteristic directions in the upstream flow, is held constant. Flow (iv) is 
of interest, since it permits a simple check of the present analysis with higher- 
order thin airfoil theory results for the trailing edge shock wave. Flow (vi) is a 
hypothetical flow, in which @, will be allowed to assume a number of values be- 
tween plus and minus infinity. The object is to obtain some insight into the more 
difficult problem of shock propagation in non-simple wave regions. The last flow 
considered, which doesnot belong to either category (a)  or (b) ,  is (vii) the propaga- 
tion of a shock through a weak constant pressure rotational disturbance. The 
purpose will be to examine the relative contributions of small horizontal and 
vertical fluctuations in velocity to the sound waves generated when a shock 
propagates through a weak vortex. Flows (i)-(vii) provide basic insights into a 
large number of two-dimensional inhomogeneous free stream-shock interactions 
of interest for M2 > 1. While some of the flows have the direct physical applica- 
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tions noted above, others represent highly idealized flow configurations. The 
primary objective in the selection of the seven cases is to gain understanding of 
the behaviour of the basic elements that enter into complex shock refraction 
problems when several elements are present. 

5. Seven analytic solutions to the shock refraction relation 
Assuming that criterion (3.25) is satisfied (i.e. that the strength of the incident 

waves at  the rear of the shock is weak compared to that of the emitted waves which 
propagate the disturbance downstream), the basic refraction relation (3.30) 
simplifies to 

+dM,(c2B+c382+0(82@, e3)). (5.1) 

Here terms of O(O@) and 0(82@) have been neglected in comparison with terms 
of O(0) and 0(02),  respectively. The analytic solutions to (5.1) for the seven basic 
flow fields listed in $ 4 will now be presented. The importance of these results and 
their comparison with the numerical solution of (3.28) is discussed in $6. The 
solutions for @, p 2  and M2 can be obtained directly from (3.11), (3.13), and (3.31) 
once 19 is determined. 

(i) Pure shear 

dp, = do, = 0, dM, + 0; and (5.1) reduces to 

-2ae  = ( C 2 e + c Q e 2 + o ( e 2 ~ , e 3 ) ) ~ ~ , .  (5.2) 

After substituting the expressions for the coefficients from (3.8), and rearranging 
terms, one obtains 

-- d8 M:-2 2 1---) y + l M :  82 ,  
dM1 2M1(M: - 1) 4 w: (5.3) 

which is recognized as a Bernoulli equation, if the c3 term is retained. The 
lowest-order non-trivial solution of (5.3) is obtained by dropping the term of 
O ( @ )  (i.e the right-hand side of (5.3)). The integral of the resulting homogeneous 
differential equation that satisfies the initial condition 0 = 8, when Ml = Mli is 

The solution to the non-homogeneous equation (5.3), which retains terms of 
O(e2)  and satisfies this initial condition, is 

- _ -  e 
M1i 8i (P(Ml)  - P(Ml,)) ' 

(M;, - 1)) 
ei 1 +  

(5.5) 

2 F L M  43 
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Both (5.4) and (5.5) give the local flow turning angle along the shock in terms of 
the local Mach number just upstream of the shock wave at any point in the 
shear layer, and its initial value Mli, just outside the disturbed region. 

(ii) Pure divergence 

dp, = dMl = 0, do, + 0; and (5.1) reduces to 

-2d8  = (1+0(8@,82))d8,. (5.6) 

The integral of (5.6) along the shock that satisfies the initial condition 0 = Oi 
when 8, = 0 (x-axis taken tangent to incoming streamline at  initial station) is 

(5.7) 

Since no term of O(8) appears in the coefficient of do, in (5.6), this result, (5.7), 
is valid to O ( 8 Q )  or 0 ( O z ) ,  whichever is the larger. To this order, (5.7) states that 
the incident shock can be reduced to zero strength, or nearly doubled (see (3.13)))  
by turning the upstream flow through an angle plus or minus 20i. Result (5.7) 
does not apply if O1 is increased beyond 20,, since the Rankine-Hugoniot oblique 
shock relations, from which (3.5) and (3.28) or (3.30) are derived, no longer apply. 
Negative values of 8 would imply an expansion fan rather than a shock wave. 
Theinteresting point is that theincoming disturbance is half transmitted along the 
shock wave and half transmitted along the downward running wave system at 
the rear of the shock. Thus, the shock does not rotate to  lowest order with the 
turning of the incident stream. 

8 = ei - gel. 

(iii) Pure pressure disturbance 

d8, = dMl = 0, dp, + 0;  and (5.1) reduces to 

Since M, is a constant, a, and a2 here are constants. If only the term of O(1) 
in the coefficient of dp, is retained in (5 .8) ,  then the solution satisfying the initial 
condition 8 = Bi, when p1 = pli, is 

One can also show from (3.12) and (5.8) that, to this order, dp21pz = &dp,/p,. 
Thus, 

(5.10) 

If the term of O(8) in the coefficient o f d p ,  in (6.8) is retained, then the integral of 
(5.8) obeying the above initial condition is 

where 

e = - - " 1 + ( 3 " ] + 8 ~ ( ~ ) " ,  2a,a 

( y -  1) M!- 2(M2,- 2 )  
a =  

4yM:(M2, - 1) 

(5.11) 
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(iv) Simple waves of the same family 

For simple wave regions no characteristic dimension is needed to  characterize 
the upstream flow. The flow equations depend on the geometry only implicitly 
through the dependent variables. From (3.14), dp, and do, arerelated along theg 
characteristic in the upstream flow (see figure 3) by 

dp,-a,pld8, = 0. (5.12) 

Equation (5.12) applies all along the upstream side of the shock, since conditions 
are constant along each wave of the 7 family. dM, and do, are related through the 
Prandtl-Meyer relation for isentropic turning, 

1 ae - - a ~ , ,  
7 1  

(5.13) 

where f ,  is given by (3.31). For simple waves of the same family, one does not 
have to  impose criterion (3.25) to  simplify (3.30) to  O ( P ) ,  since the 8@ terms in 
the coefficients of this equation automatically cancel, when dp, and dMl are 
eliminated in favour of do,. 

Shock wave 

FIGURE 3. Characteristic co-ordinates ahead of shock wave. 

Substituting (5.12) and (5.13) in (5.1), one obtains 

(5.14) 

However, one can show that the coefficient of the 8 term is equal to  zero for 
all M,: 

(5.15) a,--+c, f, = 0. a2 
a, 

Thus, to O ( @ ) ,  d8 = -do, or do, = 0. Therefore, 

8, = o,, (5.16) 
2-2 
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and the flow angle at  the rear of the shock is unchanged to this order. Also, 
6 - Bi = 8ii - el, which indicates that the shock is weakened by an amount equal 
to  the cumulative strength of the Mach waves that intersect it, and will have 
decayed to zero strength at  infinity, if 6, = 6, -el,. This corroborates the well- 
known result for the behaviour of the trailing edge shock in higher-order thin 
airfoil theory (Lighthill 1954). In  the latter theory, the flow conditions ahead of 
the shock are not described by the exact simple wave relations (5.12) and (5.13), 
as in the present theory, but by the second-order expression for the power series 
expansion of the Prandtl-Meyer relation about a uniform stream Mm. To O(e3)  
the entropy reflections at  the rear of the shock become important, and (5.16) 
is no longer valid. 

(v) Simple waves of the opposite family 

When a shock wave propagates through a Prandtl-Meyer expansion of the 
opposite family, one obtains, in place of (5.12) and (5.13)) 

dP, + a,p,d4 = 0, (5.17) 

(5.18) 

Forthis case, thee@ termsin thecoefficients of do, and dp,in (3.30) do not vanish, 
and criterion (3.25) is not satisfied automatically to 0 ( O 2 ) .  Equation (5.1) re- 
duces to 

1 ae, = -- m,. 
f l  

2 a ~  = a,----2+c2f, e+o(e@,e2) do,. (5.19) 1 I [i :, 
The coefficient of the 8 term is zero by virtue of (5.15) for all N,. Therefore, to 

e = ei, (5.20) 

and the local turning angle of the flow at the shock remains unchanged along 
its length. The strength of the shock, however, does vary, since the coefficients 
a, and a2 in (3.13) are functions of M,, which changes in accordance with the 
Prandtl-Meyer relation (5.18) for the upstream flow. 

O(O@, ez), do = 0, 

(vi) Irrotational $ow, non-simple waves 

In  cases (iv), simple waves of the same family, and (v), simple waves of the 
opposite family, we examined the two limiting cases of isentropic, upstream flow: 
first only waves of the same family as the shock wave, then only waves of the 
opposite family to the shock wave. If @, is defined by the value of the ratio pJp7 
just upstream of the shock, then @, = 00 or @, = 0 for simple waves of the same 
or opposite family as the shock respectively. In  either case, B@ is small compared 
to unity downstream of the shock. We would now like to consider more com- 
licated upstream disturbances, in which waves of both families are present. 

Provided the upstream disturbance is still isentropic, dpl and dM, are related by 

dp - a'pldMl. 
l -  fi (5.21) 
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Substituting this result in (5.1), making use of (5.15), and neglecting terms of 
O(S@} and O(@) in the coefficients of the differentials, one obtains 

2ae = -ael--. dPl 
a,  P1 

(5.22) 

dp, and d0, at the front of the shock in (5.22) can be related in much the same 
manner as were dpz and do, at the rear of the shock in $3 (ii). One first derives the 
equation of the shock front in terms of the 6, 7 characteristic co-ordinates up- 
stream of the shock wave, then derives the relation between dp, and do, along 
this line, using the p ,  $ characteristic relations (3.14). 

From figure 3, one obtains in place of (3.17), 

a = 5d7, (5.23) 

where 
sin el - - tan p- tanp, 

tan p + tan p, * ‘ = sin (2pl + 6,) 
Following an analogous procedure to that used in the derivation of (3.22), one 
now finds that, along the upstream side of the shock wave, 

(5.24) 

6in (5.24), like cr in (3.22), can be expressed as a power series in 8 :  

5 = is1 0 + O ( W ,  (5.25) 

which to O(6) is the same as that for cr. Combining (5.24) and (5.25), substituting 
for dB1 in (5.22), and then eliminating dp, in favour of dMl from (5.21), one finds, 
after rearranging terms, 

de y1@10 = 0, 
dM,  +fiP + Yl @lo) 

(5.26) 

where the coefficients of the Q1 terms are correct to O(8) .  Unlike the flow behind 
the shock, @,B need not be small compared to unity, since we shall want to 
investigate flows for which 0, can take on any value in the range - 00 < Ql < co. 
Thus, (5.26) has a singularity a t  

0 
ZI 8=--  

Yl Ql’ 
(5.27) 

at which point d6/dM1 is infinite. The second term in (5.26) changes sign as 6 
passes through this value, so that a different behaviour can be expected on each 
side of the singularity. 

Equation (5.26) does not have a closed form solution for arbitrary values of 
(Dl over the entire range. However, if lylQ181 < 2, it simplifies, after inserting 
the expressions for fl and y,, to 

Equation (5.28) is an exact differential if 0, is a constant (i.e if the relative 
strengths of the incoming waves of both families upstream of the shock is constant 
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along its length). The solution that satisfies the initial condition 0 = Si a t  

(5.29) 
0 G(Ml) -% 

Ml = Mlc is 
-=(-I , 
ei G(M1,) 

where G ( M )  = (M2- 1)-S (1 + $(y-  l)M2)-1/(4(y-1)}. 

This solution reduces to (5.20) when (Dl = 0, simple waves of the opposite 
family. 

When lgl(DlOl is not < 2, (3.28) must be integratednumerically. First, dp, and 
do, are eliminated in favour of dMl, through (5.21) and (5.24). Equation (3.28) 

(5.30) 

The right-hand side of (5.30) is only a function of lMl, 8 and Ql when h is given 
by (3.27). Therefore, (5.30) can be readily integrated for any fixed value of @,. 
For simple waves, (5.30) simplifies to 

(5.31) 

where the minus and plus signs apply to the same (Ql = & 00) and opposite 
(Q1 = 0) families, respectively. Numerical solutions of (5.30) and (5.31) are pre- 
sented in $6.  

(vii) Small constant pressure rotational disturbances 

I n  this final case, the pressure is constant, dpl = 0, and (5.1) becomes 

-2d0 = dOl(l +O(OQ, 02))  + d M , ( ~ 2 e + ~ 3 8 ~ + 0 ( 8 ~ ~ , 8 ~ ) ) .  (5.32) 

If we neglect terms of O ( 0 )  and 0(0(D), (5.32) reduces to 

2ae  = - ae,. (5.33) 

e = e . - w  z 2 1’ (5.34) 

The solution, which satisfies the initial condition 8 = ei when 8, = 0, is 

This is the same result as case (ii), pure divergence, (5.7). Thus, if the Mach 
number fluctuations normal and parallel to the streamwise direction are of the 
same order, the effects of the fluctuations in magnitude of the mainstream velocity 
are of higher order than the fluctuations in direction, since the terms involving 
dM, do not appear in (5.33). Thus, the dominant contribution in this case comes 
from the small angular fluctuations of the oncoming mainstream. The downstream 
disturbed pressure field produced by a shock-vortex interaction arises principally 
from a focusing and defocusing of the shock front due to the local convergence 
and divergence of incoming stream tubes, variations in temperature and 
horizontal velocity component being a higher-order effect. 

It is interesting to observe how the ordering of the upsteam disturbances is 
altered when the constant pressure condition dp, = 0, used in obtaining (5.32)) 
is relaxed. For a completely general supersonic upstream flow, dpl and dol are 
related by (5.24) along the upstream side of the shock. Substituting this result 
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in (5. l), neglecting terms of O(e2) ,  and retaining downstream wave interaction 
effects of O(e(D), for greater generality, one obtains 

(5.35) 

Only when (Dl approaches zero, and the upstream flow is dominated by waves of 
the opposite family to the shock, will the coefficients of the do, and dM, terms in 
(5.35) be of the same order. Therefore, result (5.34) will in general apply provided 
Q1 is not < O(f3) and d8, + 0. 

This concludes the presentation of the seven analytic solutions to the shock 
refraction relation (5.1). In  $ 6  we present in graphical form analytical and 
numerical results for each case, and discuss the important points. 

6. Discussion of results and comparison of analytical and numerical 
solutions 

In  $ 6  we discuss in greater detail the analytic solutions of $ 5  and compare 
them with numerical solutions of (3.28), the basic equation from which all the 
others were derived. In  the numerical solutions, we shall assume that the criterion 
(3.26) is satisfied, and that the wave interactions behind the shock can be 
neglected; h is then given by (3.27), and (3.28) reduces to the same relation that 
would obtain from a direct application of Whitham's approximate characteristic 
rule. 

(i) Pure shear: dol = dpl = 0;  dMl + 0 

Figures 4 and 5 present the results for case (i). This is a comparison of the 
numerical solution of (3.28) with the analytic solution of (5.4) and (5.5), the 
second- and third-order equations respectively. The problem of the propagation 
of a shock through a steady supersonic two-dimensional shear flow was first 
studied by Moeckel (1952). His basic equation is a special case of (3.28), in which 
dpl = do, = 0 and criterion (3.26) is satisfied. Thus, the numerical solutions in 
figure 4 correspond to the Moeckel-Whitham approximate theory; the analytical 
solutions are new. In  figures 4 and 5, Bi is taken as the turning angle of the flow 
at the shock a t  the point where M, is equal to one (in other words, the Mach 
number behind the shock is just sonic). Therefore, this curve corresponds to the 
case of a shock propagating outward through a shear layer from the point where 
M2 is equal to one into higher Mach number regions, or to the case of a shock 
propagating into a shear layer from an external flow toward a point on the sonic 
line. The turning angle Bfor the analytic solution was matched with the numerical 
solution at the point where Ml was equal to 10. If one interpolates between the 
curves in figure 4,e can be determined as a function of Ml for any initial turning 
angle which falls beneath the curve Bi = 20 degrees. For example, given a shock 
enteringa shear layer where the external Mach number is 7, and the turning angle 
a t  incidence is 1l0,  6' is picked up through interpolation between the curves ei 
equal 18" and 20'. The interpolation continues as one proceeds into the shear 
layer. Thus, figures 4 and 5 are charts for the case of shock interaction with a 
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pure shear layer, to be used in much the same manner as the oblique shock 
charts. 

Notice that a t  hypersonic Mach numbers the turning angle 8 can vary by a 
factor of two or more when a shock wave propagates through a shear layer such 
as the supersonic portion of a boundary layer. A related result obtains from an 
earlier theory for the behaviour of expansion fans propagating through super- 
sonic boundary layers (Weinbaum 1966). In the latter work, it is shown that an 
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FIGURE 4. Comparison: - , numerical result (Moeckel-Whitham approximation) ; 
- _ _ _ _ -  , second-order result (5.4); -.-.-.- , third-order result (5.5), for the variation of local 
shock deflection angle in a shear layer. Ox value of O at M ,  = 1. 

expansion fan, interacting with a shear layer, will generate large differences in 
turning angle and large gradients in pressure along the rear of the expansion 
fan at  high Mach numbers. There is remarkable agreement (see figure 4) between 
the second- and third-order analytic theory and the numerical solution, even 
for local turning angles as large as 20°, except as one approaches M, = 1. To 
treat the region near M, = 1 properly, the analysis would have to be developed, 
not in the local turning angle, but in the transonic similarity variable. At the 
larger turning angles and higher Mach numbers, the numerical solutions may for 
the reasons already discussed become inaccurate. 0 for a hypersonic shear layer 
can be of O(1). Thus, if the upward reflected waves behind the shock are to be 
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neglected, (T in condition (3.26) must be small compared to unity. Figure 2 thus 
serves as a convenient guide for the accuracy of these numerical solutions. 

Figure 5 is the plot of the variation in shock strength versw MI for case (i), 
pure shear. In this figure, the second-order theory corresponds to the Busemann 
expression for the pressure change across the shock, (3.13)) and is based on solu- 
tion (5.4) for 0. The third-order result was obtained from the third-order ex- 
pression given for the pressure change in Lighthill (1954, SE, 3), and is based 

A 

FIGURE 5 .  Variation of shock strength in a shear layer: __ , numerical (3.1) ; - - - - - 9  

Buseman second-order; -.-.-.- , third-order Lighthill (1954). Local values of 8 obtained 
from respective curves in figure 4. 

on solution (5.5) for 8. The behaviour for the shock strength as a function of MI 
is just the inverse of the behaviour that was observed for the local turning angle 
of the shock (figure 4): 0 decreases monotonically as a function of Mach number 
beyond the transonic region, whereas the shock strengthincreases with increasing 
Mach number. The agreement between the analytic solutions and the numerical 
solution for the strength of the shock, as based upon either the Busemann second- 
order or the third-order theory, is not nearly as good as that for the local turning 
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angle 8. The authors believe the explanation for this is that the equation for 8 
is based, not on the absolute value of the pressure change that occurs across the 
shock, but on the pressure gradient dp2 that is being generated at  the rear of the 
shock. This pressure gradient, which gives rise to the emitted waves, depends 
on relative changes in shock strength (i.e the slope of the shock strength curves 
in figure 5), and not on the absolute values of the shock strength, the quantity 
of interest in the higher-order theory of Busemann and Lighthill. This argument 
is consistent with the observation that the numerical and analytic solution 
curves in figure 5 are very nearly parallel, even for the larger turning angles in 
the figure, except in the transonic region. 

(ii) Pure  divergence: dp ,  = dMl = 0; d#, + 0 

Figure 6 presents the results for case (ii), pure divergence. The locaI turning 
angle 8 is plotted as a function of the upstream flow direction el, for various 
initial turning angles Bi, for an incident stream at Ml = 3.0. The agreement 
between the numerical solution of (3.36) with h given by (3.27) and the second- 
order analytical solution (5.7) is striking. Small departures from the numerical 

40" c 

P 

- 0, + 4 
FIGURE 6. Comparison: __ , numerical solution ((3.28) with condition (3.26) imposed) ; 
- - - - -, second-order solution (5.7), for the variation of the local shock turning angle 0 
in a converging or diverging stream. iM, = 3. 

solution exist only at  the very largest values of 8, near M2 = 1, and then only 
€or initial turning angles in excess of 20". Excellent agreement was also observed 
for other values of M, (not shown), the difference between the numerical and 
second-order analytical solutions increasing slightly with increasing Mach 
number. At MI = 10, maximum deviations were still confined to less than 10 % 
over the entire range of 8,) for which the theory is valid for #i = 30". According 
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to the second-order theory (5.7), the shock strength is reduced to zero if the 
flow ahead of it is turned through a positive angle 28,, or doubled if 6, is turned 
through an angle - 20i. This is an important point. The cumulative turning of 
the flow by the waves emitted at  the back of the shock can be comparable to 
the turning angle produced by the shock, if the angular deflections of the incident 
stream are of the same order as the turning angle of the shock in an undisturbed 
stream. This effect should then be an important consideration for very weak 
shocks propagating through a small disturbance field, e.g. the propagation 
through the earth's boundary layer of the far field N wave produced by an 
aircraft flying a t  high altitude. 

No numerical solutions to case (iii), pure pressure disturbance, were obtained. 
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(iv) Simple waves of the same family 

The cases calculated and shown in figure 7 are for various strength oblique shocks 
entering an expansion fan of the same family at  an initial Mach number MI% = 3. 
The numerical solution corresponds to (5.31)) taken with the minus sign, with h 
given by (3.27). The shock is gradually attenuated by the Prandtl-Meyer ex- 
pansion and eventually reduced to zero strength at infinity in space. The solu- 
tions presented herein are independent of the spatial co-ordinates, since we are 
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looking at exact differentials involving just the flow variables. The turning angle 
at  the back of the shock according to the second-order theory (5.16) remains 
unchanged, 13~ = OZi. The waves entering the shock turn the upstream flow 
progressively upward, until the flow directions just upstream and downstream 
ofthe shock are parallel, and the shock is reduced to zero strength. For example, 
consider the case where the incident shock strength is 0% = 15"; if the flow ahead 
ofit is turned up 15O, then to O(@) the shock is no longer required, since, to this 
order, the oblique shock relations are equivalent to a Prandtl-Meyer expansion 
of the same family. The line drawn through the end points of the numerical 
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FIGURE 8. Prandtl-Meyer turning angle BSf required to completely attenuate an oblique 
shock of the same family as a function of incident Mach number M I i .  - , numerical 
solution (5.31); - - - - -, second-order solution (5.16). 

curves gives the values of 6J0, a t  which 8 becomes equal to zero (i.e. where the 
shock is of zero strength). The departure of this value of 8,/8, from unity, the 
value predicted by the second-order theory, which is isentropic, is a measure of 
the strength of entropy reflections or non-isentropic behaviour of the shock. These 
reflected waves, whose strength is 0(03) ,  grow in importance as the shock strength 
is increased. It is interesting to note in figure 7 that, for an initial Mach number 
of three, this third-order effect produces less than 2 yo discrepancies in the shock 
propagation results for turning angles as large as 30". The numerical solutions, 
which neglect the wave interactions behind the shock, should be a very good 



10" 

5 " -  

0" 

-c 
I I --_- ------ ---------- -- loo 

8" 

6" 

4" 

2" 

- 
--- ---- -__-_--_-_ I 

I 
I 

I I I I 

I 

c - ---I_ 

t 
I 
I 1  - 



30 S. Weinbaum and A .  Coldburg 

numerical solution of the resulting equation, for the case Oi = 30") and Mli = 3 
has been previously presented by Rosciszewski (1960), who compared his 
numerical solution with an exact characteristics calculation, and demonstrated 
very close agreement between the two solutions for this case. One would, there- 
fore, expect that condition (3.26) is not seriously violated for the smaller turning 
angle cases shown in figure 9, and that the numerical solution curves are a good 
representation of the exact solution. The second-order analytic result (5.20) states 
that the turning angle a t  the shock 8 is the same all along the shock 8 = Si; 
thus the analytic theory in figure 9 shows as a horizontal line. When Oi is small, 
there is close agreement between the second-order theory and the numerical 
solution a t  all values of M,. The integration of (5.31) is started at a value Mli, 
for which M2 is just sonic. Thus, for weak shocks, the second-order theory appears 
valid even for large angle expansion fans. For shock turning angles 8, > lo", 
there seems to be a significant discrepancy between the numerical and theoretical 
solutions, larger than one would expect bearing in mind the previous comparisons. 

(vi) Irrotational jlow, non-simple waves 

This is the more complicated case, in which isentropic upstream disturbances of 
both families of waves are present. Thus, 0, = pt/p7 on the upstream side of the 
shock may take on values from plus to minus infinity. Figure 10 shows by com- 
parison with figures 9 and 7, respectively, that the results, for the limiting cases 

= i 00 (simple waves of the 
same family), approach their correct limits. The analytic solution (5.29) for 8/Oi 
is independent of Oi, and thus appears as a single curve for each value of 0, in 
figure 10. The accuracy of the analytic solution depends on the smallness of the 
quantity \ q l 0 , 8 ~ .  One notes that the solution curves as 0, approaches plus or 
minus infinity asymptote t o  the same limiting values. This occurs, because i t  
does not matter whether p7 approaches zero from the plus or minus side. When 
0, = 1 , the waves of each family are both of the same character and same strength, 
so that 8, does not change in the streamwise direction in the upstream flow. 
When = - 1, the waves of each family are of the same strength, but of 
opposite character, so that 8, does not change in the direction normal to stream- 
lines in the upstream flow. 

= 0 (simple waves of the opposite family) and 

(vii) Small constant pressure rotational disturbances 

The important result for this case was already noted in conjunction with (5.32). 
The contribution to the perturbation pressure field downstream of the shock 
caused by the interaction between the shock and a small constant pressure 
upstream disturbance is to first order produced by the variation in angle of 
incidence of the streamlines ahead of the shock (result (5.7) or (5.34))) whereas 
the shear contribution is a second-order effect. It is interesting that this result 
is in contradistinction to the assumptions used in ordering the governing fluid 
equations for the propagation of sound waves through a medium with small 
unsteady irregularities (Lighthill 1953; Kraichnan 1953; Batchelor 1957; Crow 
1969). I n  these papers, it is assumed that, in the interaction between an eddy 
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and a sound wave, the Mach number fluctuations normal and parallel to the 
undisturbed incident stream direction generate pressure disturbances, which are 
of the same order of magnitude, and that the perturbation velocity field due to 
the passage of the sound wave is small compared to the velocity field of the 

FIGURE 10. Comparison: - - - -, numerical result ((5.31) with condition (3.26) imposed), 
8 .  2 -  - 2" ; -, Bi = 10" ; - . -, analytical result (5.29), for the propagation of an oblique 
shock through an isentropic non-simple wave region with Q1, the valua of the ratio of 
pg/pl on the upstream side of the shock constant. Mli  = 3. 

turbulent fluctuations. The latter implies that the sound wave rotates to lowest 
order with the incident stream direction. The difference between a sound wave 
of wavelength h generated by a vortex or vibrating boundary (where h is large 
compared with a molecular diffusion length) and a weak shock wave, whose 
thickness is based on the latter dimension, is important to the derivation of 
acoustic scattering theory. A first-order or singly-scattered wave theory is based 
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on a first-order Born approximation, which becomes strongly divergent toward 
very short sound wavelengths. Thus, both the local wave-vortex interaction 
process and the treatment of the governing fluid equations may be fundamentally 
different for sound waves and very weak shock waves. 

7. Concluding remarks 
The approach developed in the present study, wherein a single unknown 

interaction parameter @ is introduced to describe the cumulative effect at  the 
shock front of all the wave interactions that occur downstream of the shock, 
can obviously be applied to numerous other steady and unsteady shock propaga- 
tion problems in non-uniform flow. Many of these problems are described in 
Whitham (1958) and Rosciszewski (1960), where the approach employed is based 
on the characteristic approximation. The present approach has the important 
advantage that it offers the possibility of obtaining improved results by specifying 
the distribution of the unknown interaction parameter CD. 

To illustrate the application of the present method to other problems, we shall 
briefly consider the case of one-dimensional unsteady shock propagation with 
no area changes. This case has been selected, because it is one of the illustrations 
Whitham (1958) chose to describe in detail. For normal shocks, the expansion 
variable for the shock jump relations would be the shock strength, instead of the 
shock turning angle 8, and (3.5) and (3.8) would be modified accordingly. For 
one-dimensional unsteady flow the characteristic relations, 

would replace (3.14). If 5,q denote the rightward and leftward running charac- 
teristic co-ordinates in the (t,  x) diagram, then one can show from geometry, by 
analogy with the derivation of (3.17), that 

d c  = U d T ,  (7.2) 

where U is the shock velocity, and tan-l ( l / U )  is the local slope of the shock 
trajectory in the ( t , x )  plane. Again, one introduces the unknown interaction 
parameter CD = pt/p7 and derives the expression relating d p  and d u  along the 
rear of the shock trajectory. This derivation parallels that of (3.22), and one 
obtains dp+pa(=)du=O l + u @  on - = -  dt 1 

d x  U’ 

which, when written in the form of (3.22a),  becomes 

d p + p a d u  = -pa (E) du. 
1 - d )  

(7.3) 

(7.4) 

Now the Chisnell-Whitham approximate solution for one-dimensional unsteady 
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flow depends on the smallness of the left-hand side of (7.4). In  Whitham’s 
formulation, dp +pa& along the shock trajectory is the quantity, 

(Whitham 1958, (12)). For weak shocks, Whitham argues that the first factor in 
(7.5) is small, whereas for stronger shocks he requires that pt+pau, be small if 
the approximate rule is to be accurate. These arguments are equivalent to  the 
condition that a@ < 1 in (7.4). Equation (7.5) is the counterpart of (3.228) 
for two-dimensional steady flow. 

A preliminary version of this paper was presented a t  the AIAA 7th Aerospace 
Sciences Meeting, New York, 20-22 January 1969; it is available as AIAAPaper 
69-39. We thank A. George, of Cornell University, for calling to our attention 
the similarity between the present theory and Whitham’s rule. We also thank 
Drs J.Cole and S.Crow for the helpful discussions we had with them, a t  the 
Boeing Scientific Research Laboratories. 
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